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FOREWORD 

This report  evolved f rom theoretical  studies of hypervelocity impact 

sponsored by the Lewis Research  Center  of the National Aeronautics and 

Space Administration. 

here in  has  been supported by this  contract because of its potential interest .  

Publication of the simulation concept descr ibed 
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ABSTRACT 

This report  d i scusses  the possibility of studying the problem of meteo- 

roid damage by using a l a s e r  to simulate the conditions of high-speed impact. 

The charac te r i s t ics  of the light output f rom a l a s e r  allow a strongly focused 

pulse of energy to  impinge on the ta rge t  surface. The principal content of 

.the repor t  is a cr i t ical  examination of the extent to which such i r radiat ion 

simulates the conditions of impact by a solid projecti le.  

The present  s ta te  of knowledge concerning meteoroid-impact damage 

is briefly reviewed, in o rde r  to i l lustrate  the regimes where new information 

is needed. 

It is concluded that such a simulation offers sufficient potential to  justify 

exploratory experiments.  

and some of the problems likely to be encountered a r e  pointed out. 

With this as a background, the capabilities of a l a s e r  a r e  examined. 

Suggestions a r e  made for  cer ta in  init ial  experiments,  

4 C j r H d f i  
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I. INTRODUCTION 

The prediction of the damage likely to resul t  f rom a given meteoroid 

impact  poses a number of problems which a r e  not readily amenable to avail-  

able experimental  o r  theoretical  approache s .  

t r aced  to  the ex t reme speed (10-70 km/sec)  of the meteoroids.  

a reliable penetration law at such speeds has prompted considerable theo- 

re t ical  effort ,  and has  called for th  some very ingenious developments in  

ball ist ic-range technology. 

steady p rogres s  being made, nevertheless it appears  that any major  advance 

in speed still l ies  some yea r s  in  the future. 

Basically, the difficulty can be 

The lack of 

While recent resul ts '  at  11 km/ sec  indicate the 

This repor t  discusses  the possibility of simulating impact in the hyper-  

velocity reg ime by i r radiat ing the ta rge t  surface with a pulse of intense 

electromagnetic energy f rom a Q-spoiled laser. 

device fo r  producing mater ia l  damage has  been apparent for  some t ime,  

but t he re  h a s  always been a question whether such an i r radiat ion simulates 

the conditions of impact by a solid particle.  

mental  and theoretical  studies of hypervelocity impact have produced resul ts  

which indicate an  aff i rmat ive answer ,  In par t icular ,  i t  h a s  been noted that, 

at high impact  speed, the energy imparted by the projecti le plays the domi- 

nant role in  determining the disturbance produced, with the momentum ca r r i ed  

by the projecti le playing a minor  role.  Thus, any method of energy deposition 

in a ta rge t  may  be considered for  simulating the conditions of hypervelocity 

impact ,  i r respec t ive  of whether o r  not the momentum of the projectile is 

duplicated . 

The capability of such a 
2 

However, some recent  experi-  
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F o r  the simulation to succeed, the energy source  must  meet  cer ta in  

specifications related to  the total  energy delivered, the deposition time, and 

the s ize  of the spot i r radiated.  

that the l a s e r  could meet  these specifications. 

present  a m o r e  detailed cri t ique of the simulation possibil i t ies.  

It was pointed out in the appendix of Ref. 3 

The th ree  sections below 

The f i r s t  section (Section 11) is a brief review of the present  state of 

knowledge of the theoretical  and experimental aspec ts  of the meteoroid 

damage problem. With these as a background, Section I11 presents  the bas i s  

of the simulation. The fourth section descr ibes  the suggested expel iment, 

indicating crucial  measurements  that a r e  necessary  to  establish the limits 

of validity of the simulation. 

No extensive discussions of l a s e r  principles are  given in this repor t .  

Background mater ia l  describing their  theory and operation may be found, 

for  example,  in Refs.  4 and 5, 

2 AI- 182 1 - A -  1 



11. THE METEOROID IMPACT PROBLEM 

This section consis ts  of a brief review of present  knowledge of the 

damage produced in a dense medium when s t ruck  by a fast-moving pa r -  

t ic le .  Both theoretical  and experimental  evidence a r e  examined. 

Status of Theorv 

The dominant character is t ic  of the phenomena that a r e  brought into 

play during hypervelocity impact is the large magnitude of the p r e s s u r e s  that 

a r e  generated.  

many fac tors  of ten, it is possible to  t r ea t  the deformation as the flow of a 

compressible ,  inviscid fluid. Sophisticated computer programs have been 

developed6' which permit  a numerical  t reatment  of the inviscid equations 

Because these p re s su res  exceed the mater ia l  strength by 

of motion; paral le l  developments, based on blast-wave theory 3,8-10 have 

produced useful approximations. 

Am indication of the success  of hydrodynamic theory in  this regime is 

its prediction of the his tory of shock propagation through the ta rge ts .  

shocks have been observed to be very nearly hemispherical  in shape in t r ans -  

6 ,  7 parent  t a rge t s ,  " 9  l 2  in wax, 1 3 '  l4 and in the computer solutions as well. 

Thus,  a prediction of the shock radius versus  t ime af te r  impact can serve  as 

a check on the inviscid theory.  Unfortunately, no d i rec t  comparison between 

computer-predicted shock t ra jec tor ies  and experiment has  eve r  been made. 

However, the pertinent scaling parameters  required to  put a l l  these data on 

a common footing a r e  known f rom blast-wave theory.  

sca le  f o r  shock propagation i s  large compared to  the t ime during which the 

project i le  is  destroyed, a l l  shock his tor ies  in  a given target  a r e  cor re la ted  

when the shock radius < and t ime a f t e r  impact,  t a r e  divided, 

These 

Provided the t ime 
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respectively,  by E,- -('/z-p.cz)" and R./c , where E 

energy of the projectile, Po the normal target  density,  and c the 

s t ress -wave  velocity of the target .  

ra ther  spa r se  data that have been published to date,  P a r t  of the sca t te r  

in the data is due to differences in  the target mater ia l s ,  which vary,  for  the 

cases  shown, f rom tuff (a porous rock) to iron. 

considering the wide range of mater ia l s  and of impact speeds,  and provides 

is the kinetic 

Figure 1 shows the correlat ion of the 

The correlat ion i s  quite good, 

evidence for  the cor rec tness  of the inviscid theory in describing the high- 

p re s su re  portions of the flow. 

On the other hand, such a theory contains no mechanism by which the 

ma te r i a l  can be brought to  r e s t .  To make an unequivocal determination of 

the c r a t e r  s ize ,  it is necessary  to  reinstate the effect of ma te r i a l  strength.  

Unfortunately, this is an extremely difficult task,  both analytically and nu- 

mer ica l ly .  

of predicting c r a t e r  s ize  remains unresolved. 

faced in such analyses is the question of what model to  use.  

viscoelasticity admits  a variety of models, and it i s  not always c l ea r  which 

of these i s  bes t  to use,  nor  whether the pertinent ma te r i a l  constants can be 

s pe c i f  ied. 

Several  recent studies have been made, 15-18 but the problem 

Not the leas t  of the problems 

The field of 

I 
I 

I 
Because the inviscid theories  do not, of themselves ,  predict  a final 

c r a t e r  s ize ,  the proponents of such theories must  adopt some auxiliary c r i -  

t e r ion  fo r  its determination. 

au thors ,  notably by Walsh and Tillotson6 and by Bjork. 

Different c r i te r ia  have been used by various 
7 

Thus it is not s u r -  

I pris ing to  find that the two most  advanced computer solutions a r e  interpreted 

7 I by the i r  authors  to give widely different  predictions of c r a t e r  s ize .  Bjork 
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fee ls  that c r a t e r  radius will grow with the 1 / 3  power of impact speed, while 

Walsh and Tillotson favor the 0. 62 power. 6 

In summary ,  it can be said that the fluid-mechanical models do c o r -  

rect ly  determine shock t ra jec tor ies ,  which can  be correlated for  various 

cases .  

c r a t e r  s ize ,  and no generally accepted theoretical  means of predicting it. 

Status of Experiment 

However, there  is present ly  no agreement as to  the scaling law fo r  

The uncertainties that a r e  present  on the theoret ical  side have the i r  

counterparts in experiment.  l 9  A wide variety of scaling laws and empir ica l  

correlat ions can find some experimental  data over the limited range of impact 

speed to support them, but there  are always a significant number of unexplained 

exceptions. 

shock-wave proper t ies  and energy -absorbing capabilities during the inviscid 

phase,  the tempera ture ,  hardness ,  dynamic strength, melting and resolidifi- 

cation during the l a t e r  s tages ,  t o  mention only a few. 

It i s  c l ea r  that a large number of factors  a r e  present - - the 

Since the data present ly  available do not extend to a large enough impact 

speed, these various effects cannot be sorted out. 

some very  ingenious techniques have been introduced in recent yea r s  fo r  

extending the capability of ball ist ic ranges. As a resul t  of these efforts,  

velocities slightly in excess  of 10 km/ sec have been achieved. Per formance  

of this  s o r t  i s  especially admirable,  in that i t  begins to approach some of the 

upper limits of ball ist ic-range operation. 

dition, as well  a s  f rui t ful  avenues for  fur ther  development, have been i l lus-  

t r a t ed  by Charters2 '  and by Curt is  and Gehring, 21 by considering the simple 

mechanics  of accelerat ing a m a s s  point. They point out that a l l  acce le ra tors  

To remedy the situation, 

The nature of this limiting con- 
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a r e  l imited by the fact  that the length of launch tube 

achieve a given muzzle velocity v at constant accelerat ion a (i. e . ,  

L required to  

with constant p re s su re  exer ted on the base of the projecti le) var ies  a s  the 

square of the des i red  velocity 

The maximum pres su res  that can  be applied without se r ious  deformation 

correspond to  accelerat ions on the o r d e r  of 10 gravi t ies .  Thus, according 

to Fig.  2, the launcher must  be at leas t  45 m e t e r s  long t o  achieve 3 0  k m / s e c .  

Unfortunately, it  is not present ly  possible to maintain the base p re s su re  (and 

hence the acceleration) constant over such a long distance,  and thus the length 

of an  actual launcher must  be seve ra l  t imes the s ize  indicated in F i g .  2 .  

The acce lera ted- reservoi r  technique" has demonstrated i t s  ability to im- 

prove the constancy of base p re s su re ,  but a relatively long period of develop- 

ment  appears  to be required before facilities of that type will be able to  

launch well-defined projecti les at speeds in the meteoroid range. 

6 

It is possible to  achieve higher accelerations i f  an  attendant compro- 

m i s e  in projecti le definition can be tolerated.  

encountered h i r  -Y "---- cllrh --- a n  zpprczch are those nf the exploding-foil apparatus;  

f o r  which impact speeds a s  high a s  20 km/sec  have been reported.  22 While 

this  device appears  t o  hold promise ,  nonetheless there  remain  unanswered 

questions about particle definition, in addition to  other anomalies (for lead 

t a rge t s )  which appear  to  be unique to  the exploding-foil resu l t s .  

Typical of the problems 

The s ta tus  of experiment can be summarized by stating that data do not 

extend sufficiently far into the speed range beyond 10 k m / s e c  to  resolve 

6 AI- 1821 - A -  1 



present  uncertainties in scaling laws for  c r a t e r  s ize .  The development 

period that must  precede the achievement of such velocities in ball ist ic 

ranges raises the question whether a l a se r  might be capable of producing 

the des i red  information m o r e  quickly and m o r e  economically. 

remaining sections of this  report ,  the potentialities and the limitations of 

using a Q-spoiled l a s e r  for this purpose a r e  examined, and it is concluded 

that the technique holds sufficient promise to warran t  exploratory investi-  

gations. 

In the 

AI- 1821 -A-  1 7 



111. BASIS O F  THE SIMULATION 

This section presents  the experimental and theoret ical  resu l t s  on 

which the simulation is based, and descr ibes  the minimum performance 

capabilities the l a s e r  sys tem must  possess .  

Insensitivity to Project i le  Momentum 

1 It has  been observed that a ta rge t  s t ruck by a hypervelocity projecti le 

acqui res  momentum many t imes  that of the projecti le,  implying that the 

ma te r i a l  ejected f rom the target  must  a l so  c a r r y  seve ra l  t imes  the pro-  

jecti le momentum, in the direction opposite to  that acquired by the target .  

Thus,  the disturbance generated by hypervelocity impact consists essentially 

of two la rge  parcels  of momenta,  oppositely directed.  

of these two large quantities represents  the projecti le momentum. 

the difference is small ,  i t  may be expected that a proper  simulation of hyper- 

velocity impact could be achieved by any other process  which generates  two 

la rge  and oppositely directed parce ls  of momentum, whose vector difference 

is small. 

surface by an  intense l a s e r  burs t .  

The small difference 

Because 

This is precisely the situation c rea ted  by the i r radiat ion of a target  

__  
' l he  minor  roie piayed by the projectile momentum i s  a i so  apparent 

f r o m  theoret ical  studies of hypervelocity impact.  F o r  example,  the solu- 

t ions of Walsh and Tillotson' reveal  that the flow pat terns  resulting f rom 

two impacts  having the same  energy,  but different momenta,  a r e  approxi- 

mately the same  at late t ime.  In addition, the correlat ion of shock t r a -  

j ec to r i e s  , given above, utilized only the energy of the projecti le,  ignoring 

i t s  momentum. 

8 AI- 182 1 - A -  1 



Requirements f o r  Shock- Wave Generation 

While it may be granted that momentum duplication i s  unimportant, 

there  remains a ser ious  requirement that the mode of energy re lease  must  

dr ive a strong shock wave into the target .  Par t icu lar ly  for  the case  of 

energy deposition in electromagnetic form,  it is necessa ry  to  determine 

the intensity level a t  which this requirement is m-et. 

A s  the ra te  of energy input t o  a solid is increased,  energy absorption 

by the l inear  process  of heat conduction must eventually be insufficient to 

cope with the supply. An est imate  of the level at which this occurs  can be 

infer red  f r o m  the c lass ica l  l inear-theory resu l t s  themselves .  23 Detailed 

calculations of the tempera ture  r i s e  in metals have been presented, for  

example, by Ready. 24 His resul ts  show that fo r  incident power densit ies 

9 2 grea te r  than 10 wa t t s / cm , the surface tempera ture  of a meta l  typically 

exceeds the boiling point in one nanosecond. Since even a "short-pulse" 

l a s e r  has  a discharge t ime the order  of ten nanoseconds, it is c l ea r  that 

2 a l inear  theory is inappropriate at power densit ies g rea t e r  than l o 9  wa t t s / cm . 
In this  regime,  some nonlinear process  presumably becomes important.  

It is a fundamental hypothesis of the suggested simulation that, a t  

sufficiently high r a t e s  of energy input, shock waves will be generated as the 

means of energy absorption. The evidence fo r  such a mechanism is drawn 

f r o m  the magnitude of the p r e s s u r e  pulse that is applied to  a target  surface 

during intense irradiation. When mater ia l  is being evaporated f r o m  the 

su r face  a t  a rapid ra te ,  a la rge  recoil  p ressure  is generated in the ta rge t .  

9 AI- 182 1 - A -  1 



In addition, the radiation p res su re  itself becomes appreciable a t  high 

power densit ies.  

order-of-magnitude est imate  of these effects. 

p re s su re  will be on the o rde r  of 10 

p res su re .  The resulting p res su res ,  listed in Table I below, indicate 

that shock-wave generation must  be expected-” whenever the power den- 

2 si ty exceeds l o l o  wat t s /cm . 

Askaryan and MorozZ5 have recently presented an  

They conclude that the recoi l  

4 5 to 10 t imes  a s  grea t  as the radiation 

4. 

TABLE I 

P r e s s u r e s  Generated During L a s e r  Irradiation 

Power Density 
2 w/ c m  

9 3 x 10 

3 x l 0 l 2  

3 

Radiation Pres s u r e  Recoil P r e s s u r e  
megabars megabars  

1 . 0  

- l o - ]  

2 

4 5 

l o 1  - 10 

10 - 10 

It is interesting to  note that the predicted onset of shock-wave gene- 

raiioii (at appi-axifiiate:y 

which the l inear  heat-conduction mechanism breaks  down (around l o 8  to 

9 2 10 w a t t s l c m  ) .  

y y a t t s / c Z 2 )  is ccnsistent with the level at 

The maximum power density attainable with contemporary Q- spoiled 

9 2 l a s e r s  l i e s  well above 10 wa t t s / cm . The maximum value attainable con- 

2 t inues to  rise at a rapid ra te ;  one recent survey27 indicated 1015 wa t t s / cm 

rl. * P  

The possibil i ty of shock-wave generation by a l a s e r  is a l so  mentioned in 
a recent  paper  by Missio.  26 

10 AI-1821-A-1 



as a representative upper l imit  for  existing devices.  

growth in l a s e r  capability is the development of the osci l la tor-amplif ier  

type, recently made available by severa l  firms. 

It is possible to  der ive the same lower limit for  the threshold of shock 

Typical of the rapid 

generation by an entirely different consideration. This lower l imit  may be 

established by assuming that the l a s e r  output has  generated a shock wave, 

and then inquiring what level of intensity is required to  maintain i t .  Such 

a process  consists essentially of matching the magnitude of the Poynting 

vector of the electromagnetic radiation t o  the shock strength.  To under- 

stand the matching, it is necessa ry  to think of a shock wave a s  an agent 

which de l ivers  a cer ta in  power p e r  unit a r ea  to  the medium through which 

i t  t rave ls .  Consider a plane shock advancing a t  speed Us into a medium 

of undisturbed density ,$ 

- 

0. *P 

In unit t ime ,  the shock processes  an  amount of mass given by / 3 U S  , per  

unit a r e a .  One can derive f rom the shock conservation laws that the in- 

t e rna l  energy delivered p e r  unit m a s s  is given by 

where  the p r e s s u r e  ahead of the shock, 

to  p, . The shock a l so  impar t s  kinetic energy, which to the same degree 

/rp. , is neglected in comparison 

:$ 

Rice,  McQueen, and Walsh ( see  p. 9 of Ref. 28) .  
The concept of the power-density rating of a shock wave is mentioned by 

11 AI- 1821 - A -  1 



of accuracy i s  equal to 

the mater ia l  behind the shock, pe r  unit t ime and a r e a ,  is'r 

e , -  e ,  Thus the ra te  of energy acquisition by 
ir 

The strength of any shock wave may therefore be character ized by the 

Q m n r r n t  cf n n - x r n v  per  i ~ &  i r p s  1x~hir-h it d e l i v e r s  to the  medium through r---- 

which it t rave ls .  

W L I I V U I L "  

The known shock-wave resul ts  28 ,29  for  i ron a r e  in te r -  

preted in this light in Fig.  3 ,  where it is seen that weak shock waves 

( f+o "J 1, 3 )  impar t  about l o l o  wat t s /cm , while extremely strong 

shocks ( /)/ 3 )  t r ans fe r  to  the medium some 1013 wa t t s l cm . 
These o r d e r s  of magnitude indicate that, to drive a significant shock into 

a metall ic ta rge t ,  a power density of at least  l o l o  wa t t s / cm is required,  

2 

2 

PO 

2 

in  accord  with the conclusions reached above. 

The resu l t s  shown in Fig.  3 a r e  typical of many solids,  as can be 

seen  by examining the power-density rating of a solid whose Hugoniot d i s -  

plays a l i nea r  shock speed-particle speed relation: 

(4) d, = c f s u ,  
where C is approximately the s t r e s s  wave speed, and S i s  a con- 

s tan t  e ? ~  t he  e r d e r  of sne t o  three. -4 l a rge  number of mater ia l s  obey such 

a relation, and values of the constants C and S can be found, f o r  

example,  in Ref. 28. A tabulation f o r  a number of typical solids is given 

in  Table 11. F o r  such a mater ia l ,  use of the Rankine-Hugoniot equations 

leads  to  the following relation between power density and the mass-densi ty  

:;C 

the power densi t ies  l isted in the present  report  a r e  twice a s  la rge ,  a t  a given 
shock s t rength ,  as those of the previous papers .  

The fac tor  two appearing in this equation was omitted in Refs. 3 and 8. Thus 
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ra t io  a c r o s s  the shock: 

The quantity p.c3 is typically on the order  of lo1' wa t t s / cm 2 , while 
-2  4 the right-hand side of this expression varies f r o m  around 10 

in the regime where Eq. (4) is valid. 

above may Se considered typical of most  solids. 

up to 10 

Thus the o r d e r s  of magnitude cited 

F r o m  the point of view of meteoroid-impact simulation, these power- 

density ratings provide an indication of the equivalent impact velocity that 

can  be simulated. F igure  4 gives the power-density ra t ings of the shock 
rl, e,- 

waves that are generated by iron-on-iron impact. 

goes into driving the shock, then power densities like 1013 wa t t s / cm 

If all of the l a s e r  energy 
2 

could 

s imulate  impact  at speeds on the o rde r  of 40 k m / s e c .  

Independent Variation of Energy and Momentum 

Because of the cu r ren t  controversy between "energy scaling" and 

"momentum scaling' '  of c r a t e r  volume in hypervelocity impact,  it is impor-  

tant that any technique fo r  studying the problem be capable of independently 

varying the energy and momentum imparted to  the target .  Simulation by a 

l a s e r  does provide such a capability. 

r e su l t s  of Askaryan and Moroz. 25 The momentum acquired by the ta rge t  

The reason for  this can be seen in the 

during i r rad ia t ion  with a given amount of energy consis ts  of the momentum 

due to  radiation p res su re ,  plus the recoil  momentum. The f i r s t  of these is 

.I. e,. 

Methods f o r  calculating the s t rengths  of the shock waves generated a t  the 
impact  point a re  given, fo r  instance,  in Ref. 8, pp. 17-18. 
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direct ly  proportional to  the total  energy, but the second depends on other  

fac tors ,  such a s  the power density. 

an  independent variation of energy and momentum by focussing a given 

amount of energy to  a succession of different spot s i zes ,  

Sensitivity to  Pulse  Shape 

Thus it should be possible to  achieve 

The objective of the technique described he re  is to simulate the effects, 

such as the c r a t e r  s ize ,  produced by impact with a meteoroid.  To do so,  

it is not necessary  to  reproduce exactly the same surface p re s su re  pulse 

as experienced in a par t ic le  impact. 

the configuration in which the mater ia l  ultimately comes to r e s t ;  this takes  

shape on a t ime scale  that is long compared with the period of excitation at 

the surface.  By that t ime,  the mater ia l  has essentially lost  all memory  of 

the fine s t ruc ture  of its initiation process .  

in hypervelocity experiments,  where the c r a t e r s  produced by a cube o r  a 

sphere a r e  the same.  It a l so  constitutes the justification for  the use of a right- 

c i r cu la r  cylinder as the projecti le in the computer solutions, and for  the use  

of an  instantaneous point-release of energy in the blast-wave approach. 

The information des i red  relates  to  

This  fact  has  long been recognized 

Such insensitivity to  the detailed s t ructure  of the excitation fo rms  par t  

of the bas i s  fo r  the simulation suggested here .  It must  be recognized that 

i r radiat ion by a l a s e r  will not generate precisely the same p res su re  pulse 

as that produced in par t ic le  impact,  due to the presence of such fac tors  as 

heating by absorption, and interaction of emitted vapor with the beam. 

the purpose of studying meteoroid-impact damage, however, i t  is only neces-  

s a r y  that the pulse be shor t  compared to the t ime required to  produce the 

damage, and that the pulse be capable of generating a shock wave. 

F o r  
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Effects Noted a t  Lower Power Densities 

An intense flux of electromagnetic radiation can be delivered by a 

variety of devices. 

being coherent,  can be focused much more sharply,  s o  as to  generate a 

m o r e  intense flux. It is interesting, however, to note some of the effects 

that  have been produced by various devices at power-density levels below 

those being cons ide red he re .  

The main distinctive feature of the l a s e r  is that i t s  beam, 

By focusing the emission f r o m  a flash lamp, Nelson and his  a s soc -  

wa t t s / cm . 4 2 iates3' have i r radiated various mater ia l s  with as much as  10 

Even at this modest level,  t empera tures  of 5000°K a r e  quickly produced in 

thin samples .  

5 x 10 wa t t s / cm by Good, 3 1  who observed crazing and cracking of a 

g lass  ta rge t ,  in  spite of its relative transparency. Electron beams,  cap- 

9 2 32 able  of producing 10 

to  produce seve re  damage to metals .  

power-density levels on the o rde r  of IO9 wat ts /cm has  recently been 

reported by Lichtman and Ready;33 these authors were  able to explain 

the i r  observations on the bas i s  of a heat-conduction mechanism.  

An interest ing experiment,  f rom the present  point of view, has  been 

The same  technique has  recently been employed up to 

4 2 

wat t s / cm , have been employed by Heil and Vogel 

Another s e r i e s  of experiments  a t  

2 

repor ted  recently by Ready, 34 who used a l a s e r  to  i r rad ia te  a carbon block 

with a power density of approximately l o l o  wa t t s / cm . 
of vaporized mater ia l  was ejected f rom the ta rge t  surface,  shortly a f te r  

terminat ion of the l a s e r  pulse. It appears that most  of the incident energy 

was initially invested in nonequilibrium excitation, which was subsequently 

t r a n s f e r r e d  to  translational energy of the carbon atoms during the relaxa-  

tion toward equilibrium. 

2 A glowing plume 
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Finally, some recent papers  on s t ress-wave generation by absorption 

of electromagnetic radiation should be noted. 35-38 The ear l ies t  of these is 

the work of Michaels, 3 5  who detected the generation of s t r e s s  waves when 

the radiant energy f rom an exploding wire  was focused on one end of an 

aluminum rod. This experiment (performed at seve ra l  hundred wa t t s / cm ) 

together with an  analysis  of the s t r e s s  produced by thermal  expansion, led 

8 2 Michaels to conclude that a power density on the o r d e r  of 10 wa t t s / cm 

would cause damage in aluminum. Subsequent to this  work, there  appeared 

a s e r i e s  of papers  by White 

by microwaves,  e lectron beams,  and a laser .  One of the important contri-  

butions of White's work was t o  point out that the s t r e s s  amplitude i s  con- 

siderably g rea t e r  than the radiation pressure ,  even at the low end of the 

power-density spectrum. 

ve r y  high - f requenc y acoustic wave s by pulsed ele  c t r omagne t ic ene rgy, 

which had been anticipated by Askaryan and Moroz. 

2 

reporting the generation of s t r e s s  waves 36-38 

White a l so  called attention to the generation of 

25 

White's measurements  have shown a l inear  dependence between the 

incident power density and the amplitude of the s t r e s s  wave produced. 

a relation is predicted by uncoupled thermoelastic theory.  

to  compare this  observation with the weak-wave l imit  of the analysis presented 

above, in which the power-density ratings of shock waves were  calculated. 

F o r  a ma te r i a l  which has  a l inear  shock speed-particle speed relation, the 

expression linking the power density to the p r e s s u r e  generated behind the 

shock i s  ( this  p r e s s u r e  may be considered the nonlinear counterpart  of the 

s t r e s s  amplitude) 

Such 

It is interesting 
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I d -6’ I 

in contrast  t o  the l inear  dependence that is  observed. 

the discrepancy is that the strong-shock mechanism i s  not the proper  one 

in the reg ime of White’s measurements .  The simple energy conservation 

The reason for  

I that led to  the power-density rating of a strong shock is inappropriate in 

the range where essentially all the input goes into heating the solid. 
I :;c 

I 

p o  c’ 2s 

I In the weak-wave l imit ,  this yields a square-root dependence 

The beginning of the transit ion f rom the purely the rma l  regime to the 
reg ime where  the s t ra in  energy imparted by the wave is appreciable could 
be investigated by a rigorous application of coupled thermoelast ic  theory 
(Refs .  16 and 39 for  example) but this point is not pursued in  the present  I 
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IV. EXPERIMENTAL APPROACH 

This section descr ibes  the suggested experiment ,  and cal ls  attention 

to  some of the problems that a r e  likely to be encountered. 

Scale of the ExDeriment 
~~~ 

The range of energies  encountered in the meteoroid impact problem 

is shown in Fig.  5. A s  noted previously, the impact velocities of concern 

extend f rom 10 to  70 km/sec .  The range of m a s s e s  most  likely to  cailse 

damage depends on the nature  and duration of the space mission. 

duration protection of a space radiator,  f o r  example,  par t ic les  f rom 10 

to  10-1 gm must  be considered. 41 A mission of sho r t e r  duration, which i s  

F o r  long- 

- 4  

l e s s  apt to encounter the infrequent la rge  par t ic les ,  requi res  consideration 

only of sma l l e r  ones.  The duration of impact, es t imated a s  the meteoroid 

d iameter  divided by its speed, is on the order  of to  seconds (for 

3 a density on the o rde r  of 1. 0 g m / c m  ). 

Ballist ic-range measurements  a r e  generally res t r ic ted  to the region 

- 2  above 10 gm, and to  velocities l e s s  than 10 k m / s e c .  Typical present-  

day l a s e r s ,  operating in the Q-spoiled mode, a r e  capable of delivering 

approximately 1 to  10 joules,  in approximately 10 to  seconds. Thus,  -8  

the regime accessible  to the l a s e r  l i e s  well within the boundaries of the 

meteoroid environment. 

In o r d e r  to re la te  the damage produced by the l a s e r  to  an  equivalent 

par t ic le  impact ,  some determination of the shock t ra jec tory  within the 

t a rge t  will be needed. Measurements of such g r o s s  quantities a s  c r a t e r  

s i ze  o r  ta rge t  momentum a r e  not enough. F r o m  this  viewpoint the most  

important fea ture  to  be noted is that the l a se r  energy is on the order  of 
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seve ra l  joules.  Taken in conjunction with the cube-root energy scaling 

i l lustrated in Fig.  1, the implication is  that the t ime and distance sca les  

f o r  the experiments wi l l  be of the same  order  as  those of the actual meteo- 

roid environment, that is ,  they will lie in  the submicrosecond, subcentimeter 

range. 

ca re .  

Details of Experiments in Lucite 

To make measurements  on such a scale  will require  considerable 

Much of our present  understanding of the mechanism of hypervelocity 

impact has  come f rom observations in t ransparent  targets .  l 1  It would be 

well to use such mater ia l s  in the initial experiments with the l a s e r ,  in 

o rde r  to  establish its connection with ball ist ic-range resu l t s ,  and to  pro-  

vide a convenient setting for  the development of experimental  technique. 

Lucite offers severa l  advantages in this regard.  

in the infrared,  41 which includes the wavelengths of many contemporary 

l a s e r s .  

by available techniques. l 1  Thus, an interesting experiment would be to 

i r rad ia te  a block of Lucite,  taking a short-duration photograph f rom the side 

at a shor t  t ime af te r  the l a s e r  pulse. 

with var ious t ime delays af ter  the l a s e r  pulse would reveal  details  of the 

shock propagation. 

.b 

It has  an absorption band-'' 

In addition, shock waves in this  mater ia l  can easi ly  be photographed 

A s e r i e s  of such photographs taken 

These resul ts  could be used in conjunction with the 

* 
wavelength of about 3 .  3p. These resul ts  apply, of course ,  only for  a radia-  
tion flux far below that contemplated he re ,  and sufficiently low that even 
the t empera tu re  r i s e  due to absorption may be neglected. 
predict  what the absorption spectrum will be a t  large power densit ies,  but the 
existence of an absorption band a t  normal conditions suggests that Lucite will 
be  strongly absorbing under the conditions of the experiment.  

The absorption is approximately 50% f o r  a 1 cm thick specimen, a t  a 

It is difficult to  
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correlat ion predicted by blast-wave theory to  infer f rom the observed 

t ra jec tory  the amount of energy absorbed. 

Details of the shock t ra jec tory  anticipated in a Lucite target  a r e  shown 

in Fig.  6,  for  severa l  values of the energy absorbed.  The constant-energy 

curves are taken f rom the quasi-steady theory of Ref. 3 ,  and a r e  based 

on the approximation of an instantaneous point-release of energy. Such 

a n  approximation does not apply a t  ear ly  t ime; during this period, the shock 

is assumed to t rave l  a t  a constant speed, dependent only on the power-density 

level.  

times and 1 . 2  t imes  the s t ress-wave speed. 

as  representing termination of the strong-shock portion of the disturbance. 

A s  noted above, shock propagation takes place over a range of severa l  milli- 

meters and seve ra l  microseconds.  To obtain significant measurements  on 

such a sca le ,  it would be necessary  to  make use of ultra-high-speed photo- 

graphy, perhaps in the form of an  image-converter camera .  

Points on the t ra jec tory  a r e  shown at which the shock speed is 10 

The slower speed may be taken 

Lucite is an at t ract ive mater ia l  to use,  not only because i ts  t r ans -  

parency in  portions of the visible spectrum permi ts  shock photographs to 

be taken, but a l so  because it can  be shocked quite easi ly .  Figure 7 shows 

the power-density rating of shock waves in Lucite. It should be noted that 

even as modest  a figure as l o 9  wat ts /cm corresponds to a shock strength 

that should be easi ly  detectable. 

Beam-Vapor Interaction 

2 

Mater ia l  evaporated during the early portions of the l a s e r  pulse may 

tend to  abso rb  the subsequent portions,  resulting in  a distortion of the pulse 

and in  a reduction of the total energy delivered to the ta rge t .  The distortion 
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effect is not se r ious ,  as mentioned above, but the simulation would c e r -  

I (indicating the beginning of t ransparency)  if the a toms were only 10% 

tainly suffer if a ma jo r  portion of the incident energy were intercepted 

42 shor t  of the target  surface.  

It was not encountered by Ready34 in  h is  carbon-block experiments ,  where 

This problem has  been pointed out by Yura. 

, ionized, o r  if the density fell by a fac tor  of ten due to  expansion of the i 
I 

I vapor . 
I 

the plume was not ejected f rom the target  until a f te r  the l a s e r  pulse was 

completed. 

effects were  noted. 

A3 
Yura *- a l so  mentions some experiments in which no such 

43 Some order-of -magnitude est imates  given recently by Rothstein 

I Est imates  such as these indicate that the vapor quickly becomes 

suggest that  the problem may not be ser ious.  Rothstein est imated the 

plasma frequency of the evaporated mater ia l ,  and compared it with the 

frequency of the l a s e r  beam. An upper l imit  for  the plasma frequency 

can be found by assuming that the vapor density is equal to  that of the solid, 

and that each atom is singly ionized. 

then equal to  the molar  density of the solid. 

10 g m / c m  , and atomic weight 100, the molar  density i s  10-1 m o l e s / c m  , 

o r  6 x 

frequency is 1. 38 x 10l6  r a d / s e c .  Lase r  light of 7000;; wavelength has  

a frequency of 2. 7 x 1015 r a d / s e c ,  which indicates that reflection would 

The number density of e lectrons is 

F o r  a solid of density 

3 3 

If each of these is  singly ionized, the plasma a toms/cm3.  

occur .  The plasma frequency would become equal to the light frequency 

t r anspa ren t .  

ma te r i a l  could be used to improve the transparency. 

It a l s o  indicates that proper selection of a layer  of surface 
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A second possibility for  minimizing the problem is  indicated by 

34 Ready's observations. 

pletion of the l a s e r  pulse and commencement of the vapor emission 

suggests that use of a carbon inser t  a s  a n  energy receptor  may be 

effective . 

The fact  that a delay occurred  between com- 

On the whole, the indications a r e  that the beam-vapor interaction 

will not be a ser ious problem, and that suitable composition of the layers  

nea r  the surface offers a means for  minimizing it. 
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V .  CONCLUDING REMARKS 

This report  has  examined the possibility of using a l a s e r  to  s imu-  

la te  the effects produced by the impact of a high-speed par t ic le .  

and limitations of the technique have been discussed;  they indicate that i ts  

unique advantages warrant  experimental  verification. 

Advantages 

It is well to bea r  in mind that the simuiaiion curli&;iiS s.ori:c zzrrezt!.; 

untested concepts, which must  be thoroughly investigated before accurate  

quantitative measurements ,  bearing on the impact situation, can be made. 

F o r  example,  the dependence of the shock strength on various pa rame te r s  

of the l a s e r  pulse (spot s ize ,  duration, etc. ) must  be established. In 

addition, the scale  of the experiment i s  on the same o rde r  a s  that of the 

meteoroid environment i tself;  such a small  scale  necessi ta tes  measurement  

techniques which require  considerable ca re .  

this aspec t  of the problem can be expected to  diminish in importance as  

m o r e  powerful l a s e r  sys tems a r e  developed. 

The difficulties introduced by 

The feature  that renders  the simulation at t ract ive is i ts  prospect of 

providing a relatively simple and economical means of testing in a regime 

that is at present  beyond the reach of conventional techniques. In view of 

these comments ,  it  appears  that simuiation by a laser affords 2 usefcl p r d -  

le1 approach. 
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Mate rial 

Aluminum 

Beryllium 

Copper 

Iron 

Lead 

Lucite 

Fused Quartz 

rungsten 

TABLE I1 

Shock- Wave Proper t ies  of Selected Mater ia ls  

2. 7 

1 .  82 

8. 90 

7. 87 

11.34 

1. 18 

2.20 

19.17 

5. 85 

7. 98 

3.97 

4. 00 

2. 07 

2. 59 

1. 30 

4. 00 

S 

1. 1 1  

1. 09 

1. 48 

1.59 

1. 52 

1. 51 

1. 56 

1. 27 

2 p0c3, Watts/ cm 

5.40 x 

9.23 x 

5.58 x 

5. 03 x 

1.001 x 

0.205 x 

0,0484 x 

12.28 x 

1010 

1010 
1010 
1010 
1010 
1010 
1010 

loiO 
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V ,  kn/eec 

Figure 2 LENGTH OF LAUNCH TUBE REQUIRED TO PRODUCE A GIVEN 
MUZZLE VELOC I TY AT CONSTANT ACCELERAT I ON 
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Figure 4 POWER-DENSITY RATING OF SHOCK WAVES DRIVEN 
INTO IRON TARGETS BY IRON PROJECTILES 
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Figure 6 LASER-GENERATED SHOCK PROPAGATION I N  LUCITE 
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